

En la actualidad la tecnología permite establecer una serie de estrategias de control que eran de difícil implementación hasta hace algunos años; especialmente, en procesos industriales complejos.

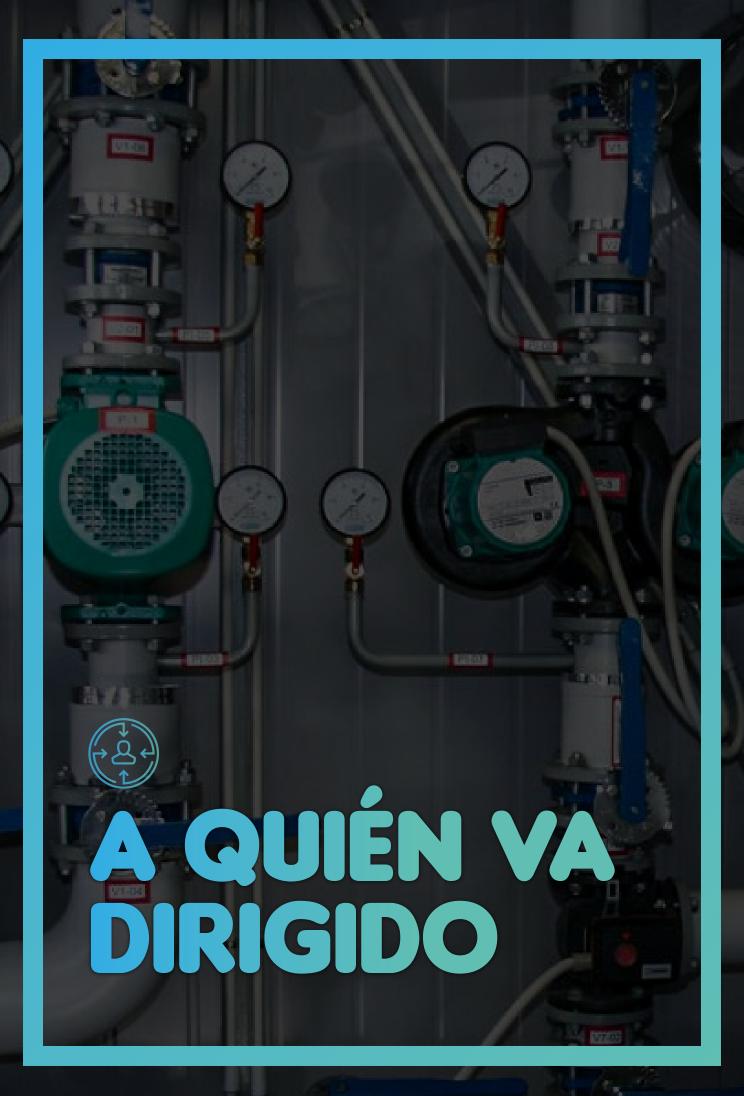
Es por ello que una amplia gama de tecnologías y ciencias se emplean en la instrumentación y el control de procesos. Los equipos y sistemas de última generación exigen al responsable de una planta esté actualizado.

Esto brinda a las empresas una ventaja competitiva al elevar la eficiencia en la productividad y producción, lo cual conlleva a la reducción de costos, plazos y desperdicios en los diversos procesos industriales.

Es por ello que Inel ha creado este programa para formar especialistas competentes en instrumentación y control industrial abarcando fundamentos prácticos y tecnologías avanzadas para aplicaciones efectivas.

No existen requisitos para llevar este programa, aunque se recomienda conocimiento básico de sistemas de control.

La capacitación se realizará con los softwares TIA portal y Factory IO.


El programa de especialización, sitúa a los alumnos en la posición de aplicar y desarrollar sistemas de instrumentación y control industrial de manera más efectiva, al aprobar el programa el alumno será capaz de:

Seleccionar y configurar instrumentos para los procesos de medición y control conforme a las necesidades de la planta.

Aplicar técnicas de ciencia de datos en la instrumentación y control

El programa de especialización está dirigido a diversos profesionales que deseen adquirir conocimientos y habilidades especializadas en el área de instrumentación y control industrial.

Gerentes, jefes y supervisores de instrumentación, producción o mantenimiento.

Ingenieros y técnicos en instrumentación, control y automatización industrial

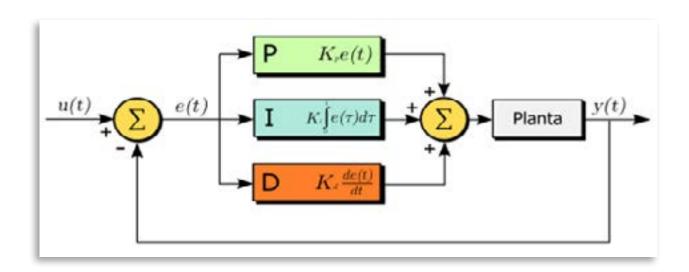
Profesionales que buscan conocer sobre la instrumentación y control de procesos industriales.

Módulo I

2 horas cronológicas

Fundamentos de instrumentación y control industrial

Fundamentos al control industrial


- Tipos de control
- Componentes de un lazo de control (cerrado y abierto)
- Características y aplicaciones de control de procesos
- Reconocimiento de las variables de un proceso
- Características estáticas y dinámicas de los Procesos

Control de Procesos Industriales

- Tipos de sintonización de controladores
- Modos de control P, PI, PID
- Diagramas de bloque

Normas ISA para la elaboración de Documentación

- Normativas ISA
- Diagramas P&ID de un proceso industrial

Módulo II

10 horas cronológicas

Instrumentación de campo

- Fundamentos de instrumentación y control
 - Medición de variables en procesos industriales
 - Selección y configuración de instrumentos
 - Traductores y transmisores
 - Normalización de señales
- Sensores Industriales
 - Sensores de Temperatura
 - Sensores de presión
 - Sensores de nivel
 - Sensores de flujo
 - Sensores de peso
 - Sensores de densidad
 - Sensores de variables químicas

Válvulas, Actuadores y Posicionadores

- Válvulas de control automático
- Actuadores
- Posicionadores

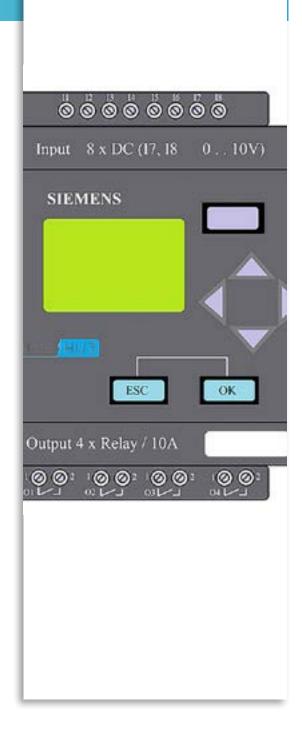
Calibración de instrumentos

- Parámetros de calibración
- Consideraciones para la instalación de sensores e instrumentos

Módulo III

20 horas cronológicas

Controladores lógicos programables (SIEMENS)

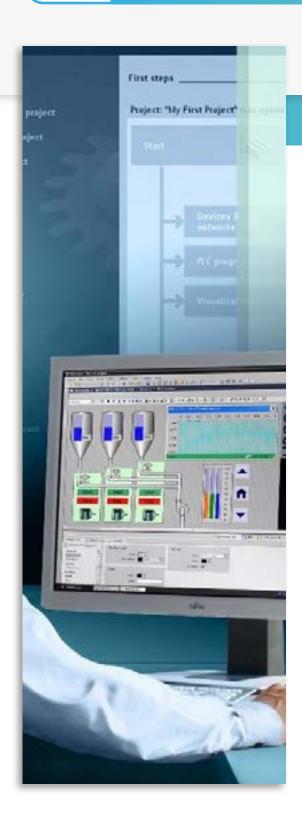

- Aspectos generales sobre los PLCs
- Características de entradas y salidas, memorias y lenguajes de programación de los PLCs
- Criterios de selección de PLCs en proyectos de automatización y control
- Comparación de familias PLCs
- Lenguajes de programación
- Continuación de Lenguajes y equipos de Programación

Programación con TIA PORTAL, STEP7 y WINCC

- Continuación PLC Siemens y software de programación
- Aplicaciones con TIA PORTAL y software de supervisión y control
- Módulos análogos e instrucción PID de PLC Siemens

Módulos especiales, redes y criterios de selección de PLCs

- Red de PLCs y controlador PAC
- Arquitectura de buses de campo
- módulos especiales y Carga de Librerias

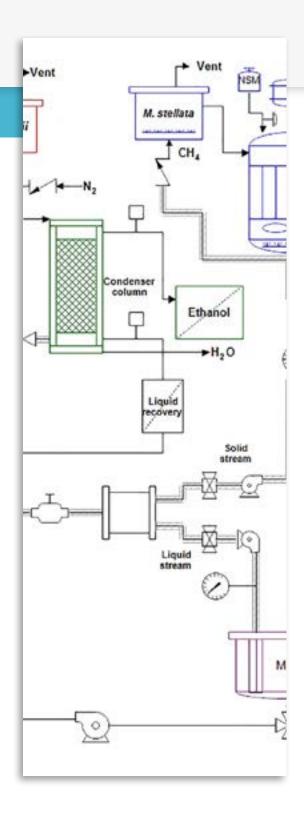


Módulo IV

6 horas cronológicas

Simulación de señales con máquinas

- Simulación de señales análogas de campo
- Introducción al control de variables de procesos
 - Control de nivel
 - Control de presión
 - Control de temperatura
- Caso real proceso de licuefacción de gas natural
- Caso real planta de licuefacción de gas natural
- Caso real en la industria de la energía
- Caso real en pruebas de equipos electrónicos
- Caso real en entrenamiento de operadores
- Caso real en sistemas de comunicación
- Caso real en sistemas de control


Módulo V

4 horas cronológicas

Documentación y P&ID

Introducción

- Sistemas de alarma y disparo
 - Sistemas instrumentados de seguridad
 - Fallo seguro de alarma y disparo
 - Documentación de alarmas y disparos
- Documentación de PLC
- Símbolos de tubería e instrumentación
 - Símbolos de interconexión
 - Símbolos de instrumentos
 - Identificación funcional
 - símbolos funcionales
- Dibujos de P&ID

Módulo VI

6 horas cronológicas

Ciencia de datos aplicada a la instrumentación y control

- Principios de data science
- Introducción a la ciencia de datos con la herramienta estadística
- Sistemas de almacenamiento y gestión de la base de datos
- Procesamiento de datos masivos
- Análisis de asociaciones
 - Regresión lineal
 - · Correlación y causalidad
- Análisis predictivo
 - Análisis supervisado
 - Evaluación de modelos predictivos
 - Modelos simples de predicción

Módulo VII

10 horas cronológicas

Sistemas HMI y SCADA

Sistemas HMI

- Evolución de la interfaz hombre máquina
- Selección y configuraciones de HMI

Diseño de sistemas HMI

- Norma ISA 101 diseño de HMI
- Diseño HMI de alto rendimiento
- Jerarquía de pantallas HMI
- Manejo de alarmas en HMI

SCADA

- Sistemas SCADA
- Arquitectura de un sistema SCADA
- Comunicaciones en un sistema SCADA
- Selección de los componentes de un sistema SCADA
- Alarmas y eventos
 - Estación de supervisión
 - Arquitectura cliente
 - Características de un software SCADA
 - Tecnologías OPC

Control de movimiento

- Control de motores
 - Circuitos eléctricos y electrónicos de control
- Variadores de velocidad
 - Características, selección e instalación
- Centro de control de motores
 - Criterios para la selección de los componentes
- Configuración de variadores digitales
 - Estructura de un variador digital
 - Configuración de parámetros

- Variadores en red industrial
 - Monitoreo y control remotos
- Dispositivos de protección
 - Dimensionamiento y selección
 - Reglas de seguridad

Un enfoque totalmente práctico, orientado a las necesidades de la industria y en la utilización de herramientas que podrán ponerse en aplicación y en práctica a proyectos reales.

Modalidad online Asíncrona o grabada

Casos prácticos reales

Proyecto final con asesoría de los instructor (es)

Aula virtual Sesiones grabadas

Recursos adicionales como vídeos o lecturas

Evaluaciones por módulo

Docentes con maestrías y certificaciones internacionales

Sergio Otiniano

Especialista en Ingeniería de Mantenimiento y Gestión de Activos

Ingeniero Eléctrico de la Universidad Privada Antenor de Orrego (Perú). Cuenta con una especialización en Ingeniería del Mantenimiento y Gestión de Activos en la Universidad de Piura. Cuenta con una diplomado en Gestión de proyectos bajo el enfoque PMBOK en la Pontificia Universidad Católica del Perú (PUCP).

Experiencia profesional con más de 12 años en el diseño, planificado y ejecutando proyectos de montaje electromecánico, control de motores eléctricos, instrumentación industrial, automatización de máquinas, control de procesos y distribución de energía bajo un enfoque del PMBOK.

Manejo avanzado en los diferentes softwares como, SoMove, StartDrive, CCW, AutoCAD. Cuenta con conocimientos avanzados en los diferentes sistemas instrumentados y de automatización como, Programación PLC, HMI y SCADA.

Actualmente instructor en Inel – Escuela Técnica de Ingeniería en el área de instrumentación y control industrial. Actualmente labora en la Compañía Minera Poderosa S.A como líder de proyectos en instrumentación y automatización industrial.

NOTA: INEL se reserva el derecho de modificar la plana docente, por motivos de fuerza mayor o por disponibilidad del expositor, garantizando que la calidad del programa no se vea afectada.

Miguel Aguirre

Especialista en Instrumentación y Control Industrial

Ingeniero Electrónico de la Universidad Nacional Experimental Politécnica Antonio José de Sucre, Venezuela; colegiado y habilitado por el Colegio de Ingenieros del Perú (CIP). Cuenta con una Maestría en Ingeniería Electrónica en la Universidad Nacional Experimental Politécnica Antonio José de Sucre.

Experiencia profesional con más de 18 años en instrumentación de campo, instrumentación de laboratorio de control de calidad, programación de PLC/DCS/SCADA, protocolos industriales e integración en la automatización y control; para plantas y procesos industriales.

Manejo Avanzado en los diferentes softwares como, NodeJS, Python, Labview, entre otros. Cuenta con conocimientos avanzados en los diferentes sistemas instrumentados y de automatización como, Programación PLC, HMI y SCADA.

Actualmente instructor en Inel - Escuela Técnica de Ingeniería en el área de instrumentación y control industrial. Actualmente labora en LETMAN SAC, como jefe de ventas en proyectos de automatización e instrumentación industrial.

NOTA: INEL se reserva el derecho de modificar la plana docente, por motivos de fuerza mayor o por disponibilidad del expositor, garantizando que la calidad del programa no se vea afectada.

REQUISITOS

Recomendamos internet con wifi o cable, con una velocidad mínima de 8 Mbps de descarga y 4 Mbps de subida

Audífono y micrófono operativos

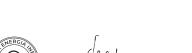
Cámara web opcional

Monitor doble o pantalla doble es opcional pero altamente recomendable

Todos los participantes que completen con éxito el programa recibirán un certificado emitido por Inel -Escuela Técnica de Ingeniería con la duración de 68 horas cronológicas.

Si el participante desarrolla el proyecto final (opcional), el certificado se emitirá con una duración de 136 horas cronológicas.

CERTIFICADO


Otorgado a:

ROBERT LUIS ROSAS ROMERO

Por haber completado en forma satisfactoria el:

PROGRAMA DE ESPECIALIZACIÓN EN MANTENIMIENTO DE SUBESTACIONES DE ALTA Y EXTRA ALTA TENSIÓN

Desarrollado desde el 19 de enero del 2022 hasta el 25 de agosto del 2022. Durante el programa se desarrolló los contenidos detallados al reverso. Duración : 60 horas cronológicas.

Huancayo, Perú

ESTRUCTURA

NOTA

CURRICULAR

INTRODUCCIÓN AL MANTENIMIENTO **CURSO I** DE SUBESTACIONES

CURSO VII

MANTENIMIENTO DE DESCARGADORES DE SOBRETENSIÓN

CURSO II

GESTIÓN DE ACTIVOS DE SUBESTACIONES

CURSO VIII

MANTENIMIENTO DE MALLA A TIERRA

CURSO III

MANTENIMIENTO CENTRADO EN CONFIABILIDAD

CURSO IX

POWER BI APLICADO AL MANTENIMIENTO DE SUBESTACIONES

CURSO IV

MANTENIMIENTO DE TRANSFORMADORES DE POTENCIA

CURSO X

EVALUACIÓN DEL MANTENIMIENTO DE

MANTENIMIENTO DE SUBESTACIONES

CURSO V MANTENIMIENTO DE INTERRUPTORES Y SECCIONADORES DE POTENCIA

CURSO XI

CIENCIA DE DATOS APLICADO AL

CURSO VI MANTENIMIENTO DE TRANSFORMADORES DE TENSIÓN Y DE CORRIENTE

(*) Escala 0 - 20

www.inelinc.com

INVERSIÓN

Inversión en Perú

2,552

Inversión extranjero

US\$

692

* El precio incluye el impuesto IGV de Perú, que es el 18% en caso la empresa o persona sea procediente de Perú; y un 0% para el extranjero

DESCUENTOS

- Inscríbete ya y accede a un 10% de descuento'
- Consulta por nuestros descuentos adicionales con tu asesor.
- Los descuentos tienen una duración de 5 días luego de recibir la información.

Nota: Consultar por opciones adicionales de financiamiento.

CONTACTO

Ejecutiva comercial: **Kristhel Soto**

kristelsoto@inelinc.com

Teléfono: **+51 949 217 183**

FORMALIZACIÓN

Envía de tu comprobante de pago al número +51 949 217 183

Crea una cuenta en la plataforma https://inelinc.com/cursos-online/

Se te dará la confirmación de los accesos mediante correo electrónico.

CAPACITACIÓN CORPORATIVA

Mantener a los mejores talentos comprometidos es clave para garantizar que no renuncien o se vayan a un competidor. La razón #1 por la que los empleados dejan las empresas es la falta de desarrollo profesional.

Por ello, en Inel estamos comprometidos con las empresas. Por eso, somos sus socios estratégicos a largo plazo en la formación continua de profesionales, exigida por el contexto actual.

BENEFICIOS

Modalidad online sincrónica.

asincrónica o inhouse.

Capacitación personalizada conforme a los

de negocio

requerimientos de la organización.

Incrementa la rentabilidad y apertura nuevas líneas

Mejora y retén el talento de tu empresa

Aumento de la productividad, eficiencia y calidad del trabajo.

CONTACTO

Ejecutiva comercial: Annel Pillaca

annelpillaca@inelinc.com

Teléfono: **+51 978 421 697**

